Beyond Knowledge Tracing: Modeling Skill Topologies with Bayesian Networks
نویسندگان
چکیده
Modeling and predicting student knowledge is a fundamental task of an intelligent tutoring system. A popular approach for student modeling is Bayesian Knowledge Tracing (BKT). BKT models, however, lack the ability to describe the hierarchy and relationships between the different skills of a learning domain. In this work, we therefore aim at increasing the representational power of the student model by employing dynamic Bayesian networks that are able to represent such skill topologies. To ensure model interpretability, we constrain the parameter space. We evaluate the performance of our models on five large-scale data sets of different learning domains such as mathematics, spelling learning and physics, and demonstrate that our approach outperforms BKT in prediction accuracy on unseen data across all learning domains.
منابع مشابه
A Comparison of Two Different Methods to Individualize Students and Skills
One of the most popular methods for modeling students’ knowledge is Corbett and Anderson’s [1] Bayesian Knowledge Tracing (KT) model. The original Knowledge Tracing model does not allow for individualization. In this work, we focus on comparing two different individualized models: the Student Skill model and the two-phase model, to find out which is the best for formulating the individualizatio...
متن کاملModeling Skill Combination Patterns for Deeper Knowledge Tracing
This paper explores the problem of modeling student knowledge in complex learning activities where multiple skills are required at the same time, such as in the programming domain. In such cases, it is not clear how the evidence of student performance translates to individual skills. As a result, traditional approaches to knowledge modeling, such as Knowledge Tracing (KT), which traces students...
متن کاملModeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing
The field of intelligent tutoring systems has been using the well known knowledge tracing model, popularized by Corbett and Anderson (1995) to track individual users’ knowledge for 15 years. Surprisingly, models currently in use do not allow for individual learning rates nor individualized estimates of student background knowledge. Corbett and Anderson, in their original articles, were interest...
متن کاملTowards Modeling Chunks in a Knowledge Tracing Framework for Students' Deep Learning
Traditional Knowledge Tracing, which traces students’ knowledge of each decomposed individual skill, has been a popular student model for adaptive tutoring. Unfortunately, such a model fails to model complex skill practices where simple decompositions cannot capture potential additional skills that underlie the context as a whole constituting an interconnected chunk. In this work, we propose a ...
متن کاملThe Student Skill Model
One of the most popular methods for modeling students’ knowledge is Corbett and Anderson’s[1] Bayesian Knowledge Tracing (KT) model. The original Knowledge Tracing model does not allow for individualization. Recently, Pardos and Heffernan [4] showed that more information about students’ prior knowledge can help build a better fitting model and provide a more accurate prediction of student data....
متن کامل